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Abstrak. Artikel ini membahas penerapan metode penalti fraksional untuk menyelesaikan 

masalah optimisasi dinamis dengan batasan keadaan. Teori utama yang mendukung penggunaan 

metode ini dijelaskan dalam beberapa teorema dan akibat wajar. Teorema memberikan kondisi 

yang cukup untuk penerapan metode ini. Oleh karena itu, jika semua kondisi yang disebutkan 

dalam teorema terpenuhi maka solusi yang dihasilkan akan dikonversi menjadi solusi analitik. 

Selain itu, ada beberapa contoh untuk mendukung teori tersebut. Simulasi numerik menunjukkan 

bahwa akurasi metode ini cukup baik. Oleh karena itu, metode ini dapat berperan sebagai metode 

alternatif untuk menyelesaikan masalah optimisasi dinamis dengan batasan keadaan. 

Kata kunci: dynamic optimization; state constraints; Pontryagin minimum principle; fractional 

penalty method  

 

Abstracts. This article discusses the application of fractional penalty method to solve dynamic 

optimization problem with state constraints. The main theories supporting the use of the method 

are described in some theorems and corollary. The theorems give sufficient conditions for the 

application of the method. Therefore, if all conditions mentioned in the theorems are met then 

the resulted solution will converge to the analytic solution. In addition, there are some examples 

to support the theory. The numerical simulation shows that the accuracy of the method is quite 

good. Hence, this method can play a role as an alternative method for solving dynamic 

optimization problem with state constraints. 

Keywords: dynamic optimization; state constraints; Pontryagin minimum principle; fractional 

penalty method 

 

1. Introduction 

The problem of dynamic optimization or also known as optimal control plays an important role because 

of many problems such as engineering, industry, social, economic, financial, biological, medical that 

can be formulated as the problem. In general, this dynamic optimization problem is a matter of choosing 

a policy/control that will optimize a function of the objectives to be achieved.  

In choosing a policy/control, it should also be noted how the observed system changes in time.  

The rules that govern the system are usually written in a differential equation or a different equation 
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depending on whether the system is formulated in a continuous or discrete form. In addition, it is also 

possible that some constraints limit policy/control variables, state variables or mixtures between the two 

variables. This makes the dynamic optimization problem very complex. Therefore, in addition to special 

cases such as linear or quadratic solution, analytic solutions to dynamic optimization problems are 

difficult to obtain. Thus, the numerical method becomes an important alternative method to solve the 

dynamic optimization problem. 

 

2. Theoretical Framework 

One important method in numerical methods that is related to constrained dynamic optimization 

problems is the penalty method. This method is widely used because it is very simple and easy to 

implement. Broadly speaking, this method works as follows: if at any time by choosing certain 

policies/controls the resulting system state violates the constraints then a penalty is given to the objective 

function. Conversely, if at any time with a certain policy/control the state of the system produced does 

not violate the constraints then no penalty is given to the objective function.  

Thus, for each time this method will choose a particular policy/control that results in a system state that 

does not violate the constraints. Penalties commonly given to solve dynamic optimization problems are 

linear as in [1]–[4]. This paper presents an alternative penalty method to solve constrained dynamic 

optimization problems by using penalties in the form of fractions that can be seen as an extension of 

linear form. 

 

3. Methodology 

The results of the research are literature review that is supported by numerical experimental results. The 

literature review is used to develop theories that provide assurance that the method developed will 

provide the correct solution. While numerical experiments through simulations are used to verify the 

proposed hypothesis. By comparing the results of the simulation with the previously-known solution, 

the accuracy level of the developed method can be seen. This experiment took some examples of 

problems with known analytical and numerical solutions.  

 

4. Discussion 

In this section, the basic theory of convergence using the fractional rank method in solving the dynamic 

optimization problem is constrained. This research is using the minimum principle of Pontrygin, which 

can be seen in [5], [6] and the results are tested with numerical examples that support the theory 

developed. 

4.1 Problem Formulation 

The problem discussed in this paper is a dynamic optimization problem with the state constraints 

described below. The objective function is minimized as the following: 

 

min
𝑢∈Γ

 𝐼(𝑢) = ∫ 𝐹(𝑥, 𝑢, 𝑡) 𝑑𝑡 +  𝜓(𝑥(𝑇))
𝑇𝑓

0

 (1) 

 

On condition that the initial value problem: 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑢, 𝑡), 𝑥 ∈ ℝ𝑛, ∀ 𝑡 ∈ (0, 𝑇𝑓] (2) 

 

𝑥(0) = 𝑥0, 𝑥0 ∈ ℝ
𝑛 (3) 
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And state constraints:  

Γ = { 𝑢 ∈ ℝ𝑚 | ℎ(𝑥, 𝑢, 𝑡) ≤ 0 }, ∀ 𝑡 ∈ (0, 𝑇𝑓] . (4) 

 

In this problem, 𝑥 refers to state vector, 𝑢 refers to control vector, and 𝑡 refers to time. Constant 

𝑇𝑓 > 0 refers to end time of observation. The functions  𝐹: ℝ𝑛+𝑚+1 → ℝ , 𝜓:ℝ𝑛 → ℝ, 𝑓:ℝ𝑛+𝑚+1 →

ℝ𝑛 and  ℎ:ℝ𝑛+𝑚+1 → ℝ𝑝 are known and differentiated level two of all the arguments continuously.  

The problem of dynamic optimization constrained above can be solved more easily if it is changed 

to a problem of dynamic optimization without constraints. The step commonly performed is to add 

constraints as a number called penalty number into the objective function. If at any time in a state and 

policy/control the constraints are met, the number of penalty equals to zero. Conversely, if the 

constraints are not met, the number will have great value, so it is against the goal to minimize the 

objective function. Thus, this method will choose policy/control which at a certain time results a state 

that meets the given constraints. In this case, the penalty number is to the power of the following 

fraction:  

min
𝑢∈Γ

𝐽(𝑢, 𝜃) = 𝐼(𝑢) + ∫ 𝜃𝑇ℎ1/𝑠(𝑥, 𝑢, 𝑡) 𝑑𝑡
𝑇𝑓

0

 (5) 

 

which must meet the initial value problem, 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑢, 𝑡), 𝑥 ∈ ℝ𝑛, ∀ 𝑡 ∈ (0, 𝑇𝑓] (6) 

 

𝑥(0) = 𝑥0, 𝑥0 ∈ ℝ
𝑛 (7) 

 

The vector 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑝)
𝑇 is penalty factor which elements are the functions of time 𝑡 with values 

always greater than 0 ( 𝜃𝑖(𝑡) > 0, ∀ 𝑖 = 1,2, … , 𝑝 , ∀𝑡 ) for each time. The function valued vector 

ℎ1/𝑠 = (ℎ1
1/𝑠
, ℎ2
1/𝑠
, … , ℎ𝑝

1/𝑠
)  is defined as follows:  

ℎ𝑖
1/𝑠
(𝑥, 𝑢, 𝑡) = {   

 0  ,                        𝑖𝑓 ℎ𝑖 ≤ 0

ℎ𝑖
1/𝑠
 ,             𝑖𝑓 0 < ℎ𝑖 < 1

 ℎ𝑖  ,                     𝑖𝑓 ℎ𝑖 ≥ 1  

 (8) 

 

∀ 𝑖 = 1,2, … , 𝑝. Whereas the constant 𝑠 is a member of a set of natural numbers.  

The following is given a theorem which states that solving the constraints of dynamic optimization 

without constraints with the fractional rank penalty method will be the same as solving the dynamic 

optimization with constraints. 

Theorem 1 

For example (𝑥∗, 𝑢∗) is stationary point and 𝐻 is Hamiltonian function from dynamic optimization 

problems to constraint that is: 

𝐻(𝑥, 𝑢, 𝑡, 𝜆) = 𝐹(𝑥, 𝑢, 𝑡) + 𝜆𝑇𝑓(𝑥, 𝑢, 𝑡) + 𝜇𝑇ℎ(𝑥, 𝑢, 𝑡). (9) 
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For example 𝜓𝑥𝑥 (semi) positive definite and 𝐻𝑢𝑢 as well as 𝐻𝑥𝑥 −𝐻𝑥𝑢𝐻𝑢𝑢
−1𝐻𝑢𝑥 positive definite 

at [0, 𝑇𝑓]. If 𝜃𝑖(𝑡) ≥ 𝜇𝑖(𝑡), ∀𝑖 = 1,2, … , 𝑝  then 𝑢∗ is a local solution of the dynamic optimization 

problem without the constraints above. 

Proof: 

For 𝑠 = 1, that is linear penalty case, the solution can be seen in (Xing, 1994). The solution will 

be broadened for case 𝑠 > 1, 𝑠 ∈ ℕ as follows. 

For example, 𝑢∗ + 𝛿𝑢 with range of policy/control and 𝑥∗ + 𝛿𝑥 with 𝛿𝑥(0) = 0 is a state in 

accordance with the policy/control, so 

Δ𝐽(𝑢∗, 𝜃) = 𝐼(𝑢∗ + 𝛿𝑢) − 𝐼(𝑢∗) + ∫ 𝜃𝑇 (ℎ
1

𝑠(𝑥∗ + 𝛿𝑥, 𝑢∗ + 𝛿𝑢, 𝑡) − ℎ
1

𝑠(𝑥∗, 𝑢∗, 𝑡))
𝑇𝑓

0

 𝑑𝑡 (10) 

 

Because when the stationary point is ℎ(𝑥∗, 𝑢∗, 𝑡) = 0 then ℎ1/𝑠(𝑥∗, 𝑢∗, 𝑡) = 0 so 

∆𝐽(𝑢∗, 𝜃) = ∫ 𝐻(
𝑇𝑓

0

𝑥∗ + 𝛿𝑥, 𝑢∗ + 𝛿𝑢, 𝑡) − 𝜆𝑇𝑓(𝑥∗ + 𝛿𝑥, 𝑢∗ + 𝛿𝑢, 𝑡)

− 𝜇𝑇ℎ(𝑥∗ + 𝛿𝑥, 𝑢∗ + 𝛿𝑢, 𝑡)𝑑𝑡 + 𝜓 (𝑥∗(𝑇𝑓) + 𝛿𝑥(𝑇𝑓))

−∫ 𝐻(𝑥∗, 𝑢∗, 𝑡) − 𝜆𝑇𝑓(𝑥∗, 𝑢∗, 𝑡)
𝑇𝑓

0

𝑑𝑡 − 𝜓 (𝑥(𝑇𝑓)) + ∫ 𝜃𝑇ℎ1/𝑠
𝑇𝑓

0

(𝑥∗

+ 𝛿𝑥, 𝑢∗ + 𝛿𝑢, 𝑡) 𝑑𝑡 

(11) 

 

 

By using Taylor series and Pontryagin minimum principle that 𝐻𝑢(𝑥
∗, 𝑢∗, 𝑡) = 0, the last equation 

can be written as follows:  

∆𝐽(𝑢∗, 𝜃) = ∫ 𝐻𝑥

𝑇𝑓

0

𝛿𝑥 +
1

2
(𝛿𝑥𝑇𝐻𝑥𝑥𝛿𝑥 + 2 𝛿𝑥

𝑇𝐻𝑥𝑢𝛿𝑢+𝛿𝑢
𝑇𝐻𝑢𝑢𝛿𝑢) 𝑑𝑡 − ∫ 𝜆𝑇

𝑇𝑓

0

𝑑(𝛿𝑥)

− 𝜇𝑇ℎ(𝑥∗ + 𝛿𝑥, 𝑢∗ + 𝛿𝑢, 𝑡)𝑑𝑡 + 𝜓 (𝑥∗(𝑇𝑓))
𝑇
𝛿𝑥(𝑇𝑓)

+
1

2
𝛿𝑥𝑇(𝑇𝑓)𝜓𝑥𝑥 (𝑥

∗(𝑇𝑓)) 𝛿𝑥(𝑇𝑓) + ∫ 𝜃𝑇ℎ
1

𝑠

𝑇𝑓

0

(𝑥∗ + 𝛿𝑥, 𝑢∗ + 𝛿𝑢, 𝑡) 𝑑𝑡

+ 𝑆(𝛿𝑥, 𝛿𝑢) 

(12) 

 

With 𝑆(𝛿𝑥, 𝛿𝑢) is the remaining number proving that|𝑆(𝛿𝑥, 𝛿𝑢)| → 0 jika ‖𝛿𝑥‖ → 0 dan 

‖𝛿𝑢‖ → 0. 
By partially making the number of the two equations integral and by using other Pontryagin 

minimum principle, which is 𝐻𝑥(𝑥
∗, 𝑢∗, 𝑡) = −

𝑑

𝑑𝑡
𝜆𝑇(𝑡) and 𝜆(𝑇𝑓) = 𝜓𝑥 (𝑥

∗(𝑇𝑓)), it is obtained 
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∆𝐽(𝑢∗, 𝜃) = ∫
1

2
(𝛿𝑥𝑇𝐻𝑥𝑥𝛿𝑥 + 2 𝛿𝑥

𝑇𝐻𝑥𝑢𝛿𝑢+𝛿𝑢
𝑇𝐻𝑢𝑢𝛿𝑢)

𝑇𝑓

0

 𝑑𝑡

+
1

2
𝛿𝑥𝑇(𝑇𝑓)𝜓𝑥𝑥 (𝑥

∗(𝑇𝑓)) 𝛿𝑥(𝑇𝑓) + ∫ (𝜃𝑇ℎ
1

𝑠

𝑇𝑓

0

−𝜇𝑇ℎ)(𝑥∗ + 𝛿𝑥, 𝑢∗

+ 𝛿𝑢, 𝑡) 𝑑𝑡 + 𝑆(𝛿𝑥, 𝛿𝑢) 

(13) 

 

If the theorem noted that 𝜃𝑖(𝑡) ≥ 𝜇𝑖(𝑡), ∀𝑖 = 1,2, … , 𝑝 and also depend on the definition of ℎ𝑖
1/𝑠

 

it can be concluded that ℎ𝑖
1/𝑠

≥ ℎ𝑖 , ∀𝑖 = 1,2, … , 𝑝 then  

∫ (𝜃𝑇ℎ
1

𝑠

𝑇𝑓

0

−𝜇𝑇ℎ)(𝑥∗ + 𝛿𝑥, 𝑢∗ + 𝛿𝑢, 𝑡) 𝑑𝑡 ≥ 0 (14) 

For example  𝛿2𝐽 = ∫
1

2
(𝛿𝑥𝑇𝐻𝑥𝑥𝛿𝑥 + 2 𝛿𝑥

𝑇𝐻𝑥𝑢𝛿𝑢+𝛿𝑢
𝑇𝐻𝑢𝑢𝛿𝑢)

𝑇𝑓
0

 𝑑𝑡 +

1

2
𝛿𝑥𝑇(𝑇𝑓)𝜓𝑥𝑥 (𝑥

∗(𝑇𝑓)) 𝛿𝑥(𝑇𝑓) then obtained 

∆𝐽(𝑢∗, 𝜃) ≥ 𝛿2𝐽 + 𝑆(𝛿𝑥, 𝛿𝑢). (15) 

Because in the theorem it is known that 𝐻𝑢𝑢 and 𝐻𝑥𝑥 −𝐻𝑥𝑢𝐻𝑢𝑢
−1𝐻𝑢𝑥 is positive definite, it is 

possible to use 𝑟 > 0 (small enough) so 𝐻𝑢𝑢 − 𝑟𝐼 positive definite and (𝐻𝑥𝑥 − 𝑟𝐼) − 𝐻𝑥𝑢(𝐻𝑢𝑢 −

𝑟𝐼)−1𝐻𝑢𝑥 is also positive definite. 

Thus, it is obtained the matrix 𝑃 in such a way that 𝑃𝑇𝑃 = (𝐻𝑥𝑥 − 𝑟𝐼) − 𝐻𝑥𝑢(𝐻𝑢𝑢 − 𝑟𝐼)
−1𝐻𝑢𝑥  

and  

𝛿2𝐽

−
𝑟

2
∫ (𝛿𝑥𝑇𝛿𝑥 + 𝛿𝑢𝑇𝛿𝑢)𝑑𝑡
𝑇𝑓

0

=
1

2
𝛿𝑥𝑇(𝑇𝑓)𝜓𝑥𝑥(𝑥

∗(𝑇𝑓))𝛿𝑥(𝑇𝑓)

+
1

2
∫ [𝛿𝑢 +

(𝐻𝑢𝑢 − 𝑟𝐼)
−1𝐻𝑢𝑥 𝛿𝑥

𝑃 𝛿𝑥
]
𝑇

[
𝐻𝑢𝑢 − 𝑟𝐼 0

0 𝐼
] [𝛿𝑢 +

(𝐻𝑢𝑢 − 𝑟𝐼)
−1𝐻𝑢𝑥 𝛿𝑥

𝑃 𝛿𝑥
]

𝑇𝑓

0

 𝑑𝑡 ≥ 0 

(16) 

  

Therefore, it can be concluded that  

∆𝐽(𝑢∗, 𝜃) ≥
𝑟

2
∫ (𝛿𝑥𝑇𝛿𝑥 + 𝛿𝑢𝑇𝛿𝑢) 𝑑𝑡 + 𝑆(𝛿𝑥, 𝛿𝑢) ≥ 0
𝑇𝑓

0

 (17) 

for  ‖𝛿𝑢‖ → 0.  

In other words, it is proven that 𝑢∗(𝑡) is the local solution from the optimization without any 

constraints above.  

Consequence 1 

Based on the same assumptions on the theorem, 𝑢∗(𝑡) is also a local solution to the problem of 

optimization with constraints. 
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Proof: 

Because of 𝑢∗(𝑡) is a local solution from the problem of optimization without obstacles then there 

is 𝜀 > 0 so that Δ𝐽(𝑢∗, 𝜃) ≥ 0 for all 𝑢(𝑡) ∈ Ν𝜀(𝑢
∗(𝑡)) with  Ν𝜀(𝑢

∗(𝑡)) = {𝑢(𝑡)|‖𝑢(𝑡) − 𝑢∗(𝑡)‖ < 𝜀}. 

It is also applies for Ν𝜀(𝑢
∗(𝑡)) ∩ Γ. Thus, 

𝐼(𝑢∗) = 𝐽(𝑢∗, 𝜃) ≤ 𝐽(𝑢, 𝜃) = 𝐼(𝑢). (18) 

 

So, with the same assumptions as in the theorem, it is proven that  𝑢∗(𝑡) is also a local solution to 

the problem of optimization with constraints. 

As aforementioned, the penalty number to the power of ℎ
1

𝑠(𝑥, 𝑢, 𝑡)  is not differentiable when the 

value is 0. Therefore, the standard optimization algorithm that involves derivatives cannot be used. 

Because of that, in the practice the number should be changed into the differentiable version as follows: 

 

ℎ𝜏
1/𝑠

=

{
 
 

 
 

0 ,   𝑖𝑓 ℎ < −𝜏

(
3

4
−
1

2𝑠
) 𝜏

(
1

𝑠
−2)(ℎ + 𝜏)2 + (

1

4𝑠
−
1

4
) 𝜏

(
1

𝑠
−3)(ℎ + 𝜏)3

ℎ1/𝑠 , 𝑖𝑓 𝜏 < ℎ < 1
ℎ     ,              𝑖𝑓 ℎ ≥ 1

, 𝑖𝑓 − 𝜏 ≤ ℎ ≤ 𝜏 (19) 

 

With smoothing constant of 𝜏 > 0 (small enough). In this case, the undifferentiability ℎ𝜏
1/𝑠

 when the 

value is 1 it does not make any problem because what needs to be considered is the convergence ℎ𝜏
1/𝑠

 

when the value is 0, that is when the constraint is active.  

 

4.2 Numeric Simulation 

The theoretical results that have been described in the previous scheme, then is verified using 

numeric simulation. There are 2 samples that are used in the simulation. The software used in this 

simulation is MISER 3.3, a program for completing dynamic optimization/ optimal control constraints. 

The algorithm in MISER 3.3 is based on the parameterizatoin method of policy/control in [7]. For the 

sake of this study, some parts of the subprograms in MISER 3.3 need some modification. Further 

explanation about MISER 3.3 can be seen in [8]. 

Example 1 [2],  

min
𝑢
𝐼 = ∫ 𝑥2 + 𝑢2 − 2 𝑢 𝑑𝑡 +

1

2
(𝑥(1))2

1

0

 (20) 

 

which must meet the initial value problem 

𝑑𝑥

𝑑𝑡
= 𝑢 ,   𝑥(0) = 0 (21) 

 

and the constraint 

ℎ(𝑥, 𝑢, 𝑡) = −(𝑥2 + 𝑢2 − 𝑡2 − 1) ≤ 0. (22) 

 

The analytical solution for this problem is  𝑥∗(𝑡) = 𝑡 and 𝑢∗(𝑡) = 1, so that the problem is always 

active for all time. The minimum objective function value is  −
1

6
≈ −0,166666….  

Besides that, analytically it is obtained  
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𝜆(𝑡) = 2 − 𝑒
(𝑡2−1)

2 , 𝜇(𝑡) = 1 −
1

2
𝑒
(𝑡2−1)

2  (23) 

 

It can also be proven that 𝜓𝑥𝑥 , 𝐻𝑢𝑢 and 𝐻𝑥𝑥 −𝐻𝑥𝑢𝐻𝑢𝑢
−1𝐻𝑢𝑥 is positive definite. So, all assumption 

in Theorem 1 is fulfilled. If 𝜃(𝑡) ≥ 𝜇(𝑡) for every time, the penalty method powered to a fraction with 

varied s value with smoothing constant (𝜏 = 0,01)  will converge to the analytic solution as shown in 

Table 1. 

Table 1. Value of objective function for various value of 𝑠 and 𝜃 

S 𝛉 I 

2 1 – 0,166601671 

3 1 – 0,166601409 

4 5 – 0,166601490 

 

More specifically, for  𝑠 = 2, 𝜃 = 1 the more detailed simulation result can be seen in Table 2. 

From Table 2, it is seen that the numeric result for state function and optimization policy/control show 

very small number of differences compared to state function and optimization policy/control obtained 

from the analytic solution.  

Table 2. Value of policy/control and optimal state for 𝑠 = 2, 𝜃 = 1 

t u(t) x(t) 

0,0 1,00006 0,00000 

0,1 1,00005 0,10001 

0,2 1,00005 0,20001 

0,3 1,00004 0,30002 

0,4 1,00004 0,40002 

0,5 1,00004 0,50002 

0,6 1,00003 0,60003 

0,7 1,00003 0,70003 

0,8 1,00002 0,80003 

0,9 1,00002 0,90004 

1,0 1,00002 1,00004 

Figure 1 shows the function graph and optimal policy/control to time. It is seen that the result of 

numeric simulation is very close to the analytic solution. 

 

Figure 1. Graph of state function and optimal control 
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For example 

The problem is taken from [7] as follows 

 

min
𝑢
𝐼 = ∫ 𝑥1

2 + 𝑥2
2 + 0,005 𝑢2 𝑑𝑡

1

0

 (24) 

 

That should meet the initial value 

𝑑𝑥1
𝑑𝑡

= 𝑥2 ,   𝑥1(0) = 0 (25) 

 

𝑑𝑥2
𝑑𝑡

= −𝑥2 + 𝑢 , 𝑥2(0) = −1 (26) 

 

And the constraint 

𝑔(𝑥, 𝑡) = −8( 𝑡 − 0,5)2 + 0,5 + 𝑥2 ≤ 0. (27) 

The analytic solution for this constrain is difficult to obtain so the best numeric solution is used as 

in [8] which objective function is 0,1736 as comparison to the result of numeric simulation that has been 

performed. 

Because the constraint of this problem does not involve variable of policy/control, so the constraint 

needs to be changed into: 

ℎ(𝑥, 𝑢, 𝑡) = 0,9 𝑔(𝑡, 𝑥) + 0,1 𝑔′(𝑡, 𝑥). (28) 

 

with 

𝑔′(𝑡, 𝑥) =
𝑑𝑔

𝑑𝑡
=
𝜕𝑔

𝜕𝑥
 
𝑑𝑥

𝑑𝑡
+
𝜕𝑔

𝜕𝑡
 . (29) 

 

The result of the constraint numeric simulation for various value of s with smoothing constant is 

shown in Table 3. 

Table 3. Value of objective function for various value of 𝑠 and 𝜃 

s 𝛉 I 

2 10 0,181512014 

3 1 0,181487693 

4 1 0,181524537 

5 1 0,181860645 

 

Figure 3 shows that the difference between the values that is obtained through numerical 

simulations performed does not differ greatly compared to the values obtained from [7] that is less than 

0,01. 

More specifically, for 𝑠 = 3, 𝜃 = 1, the detailed numerical simulation results are given in Table 

4. Figures 2, 3, and 4 illustrate optimal control functions and optimal state functions obtained from 

simulation results consecutively. The similar pictures with the simulation results used as comparison 

can be seen in [7]. 
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Table 4. Value of policy/control function and optimal state for 𝑠 = 3, 𝜃 = 1 

t u(t) 𝐱𝟏(𝐭) 𝐱𝟐(𝐭) 
0,0 8,33795 0,00000 – 1,00000 

0,1 1,29066 – 0,05483 – 0,11138 

0,2 – 2,25201 – 0,05918 0,02204 

0,3 – 2,77413 – 0,06798 – 0,19436 

0,4 – 1,26570 – 0,09990 – 0,43986 

0,5 0,26720 – 0,14788 – 0,51846 

0,6 2,08561 – 0,19592 – 0,44368 

0,7 1,86028 – 0,22805 – 0,20299 

0,8 0,21192 – 0,23837 – 0,00664 

0,9 – 0,05963 – 0,23798 0,01416 

1,0 – 0,05963 – 0,23692 0,00713 

Figure 4 describe, at any point of time, the graph of state variable functions 𝑥2 is always below the 

quadratic function graph of 8(𝑡 − 0,5)2 − 0,5. Thus, for each time the obstacle is always met by the 

optimal solution obtained because −8( 𝑡 − 0,5)2 + 0,5 + 𝑥2 ≤ 0. 

 

Figure 2. Graph of optimal control functions 

 

Figure 3. Graph of state variable functions 𝑥1 
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Figure 4. Graph of state variable functions 𝑥2 

5. Conclusion 

The conclusion of this research is theoretically the fractional rank penalty method can be used to solve 

dynamic optimization problems constrained by circumstances. This result is reinforced by the results of 

numerical simulations which show the settlement of using the fractional rank accuracy method does not 

differ much with the analytical solution or comparative settlement obtained by other methods. Thus, the 

fractional rank penalty method is effective to be used as an alternative method in solving dynamic 

optimization problems constrained by circumstances. 
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